Correcting Radial Distortion of Cameras with
Wide Angle Lens Using Point Correspondences

Leonardo Romero and Cuauhtemoc Gomez

Universidad Michoacana de San Nicolas de Hidalgo
Morelia, Mich., 58000, Mexico

lromeroQumich.mx, cgomez@codinet.com.mx

Abstract. Digital cameras with wide angle lens are typically used in
mobile robots to detect obstacles near the robot. Unfortunately cam-
eras with wide angle lens capture images with a radial distortion. This
paper describe the problems associated with severe radial distortion, re-
view some previous relevant approaches to remove the distortion, and
presents a robust method to solve the problem. The main idea is to
get feature points, which must be easily and robustly computed, from a
pattern image (which is in front of the camera) and from the distorted
image (acquired by the camera). An iterative non-linear optimization
technique is used to match feature points from one image to the other.
Experimental results show the robustness of the new method. A Linux

implementation of this approach is available as a GNU public source
code.

1 Introduction

Most algorithms in 3-D Computer Vision rely on the pinhole camera model be-
cause of its simplicity, whereas video optics, especially wide-angle lens, generate
a lot of non-linear distortion. In some applications, for instance in stereo vision
systems, this distortion can be critical.

Camera calibration consists of finding the mapping between the 3-D space
and the camera plane. This mapping can be separated in two different transfor-
mations: first, the relation between the origin of 3-D space (the global coordinate
system) and the camera coordinate system, which forms the external calibration
parameters (3-D rotation and translation), and second the mapping between
3-D points in space (using the camera coordinate system) and 2-D points on
the camera plane, which form the internal calibration parameters [1].

This paper introduces a new method to find the internal calibration parame-
ters of a camera, specifically those parameters related with the radial distortion
due to wide-angle lens.

The new method works with two images, one from the camera and one from
a calibration pattern (without distortion) and it is based on a non-linear op-
timization method to match feature points of both images, given a parametric
distortion model. The image from the calibration pattern can be a scanned im-
age, an image taken by a high quality digital camera (without lens distortion),
or even the binary image of the pattern (which printed becomes the pattern).
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First, a set of feature point correspondences between both images are com-
puted automatically. The next step is to find the best distortion model that
maps the feature points from the distorted image to the calibration pattern.
This search is guided by analytical derivatives with respect to the set of calibra-
tion parameters. The final result is the set of parameters of the best distortion
model.

The rest of this paper is organized as follows. Section 2 describe the problem
to compute transformed images and it presents the Bilinear Interpolation as a
solution to that problem. Sections 3 and 4 describe the distortion and pro jective
model that we are using. Section 5 presents the method to match pairs of points.
A brief comparison with previous calibration methods is found in section 6. Here
we show the problems associated with cameras using wide angle lens and why
some previous methods fails or require a human operator. Besides the advantages
of the proposed method are highlighted in this section. Experimental results are
shown in Section 7. Finally, some conclusions are given in Section 8.

2 Computing Transformed Images

For integer coordinates (i,j), let I(¢,7) gives the intensity value of the pixel
associated to position (i, j) in image I. Let Iy and I; be the original and trans-
formed image, respectively. A geometric transformation, considering a set © of
parameters, computes pixels of the new image, I; (4, j) in the following way:

11(1'1.7) =IO($(911".7))y(9a"|.7)) (1)

If z(6,1,j) and y(O,1,7) are outside of the image Iy, a common strategy
is to assign zero value which represents a black pixel. But, What happen when
z(6,1,j) and y(O,1,j) have real values instead of integer values? Remember
that image Io(z,y) have only valid values when z and y have integer values. An
inaccurate method to solve this problem is to use their nearest integer values,
but next section presents a much better method to interpolate a pixel of real
coordinates (z,y) from an image I.

From other point of view, pixel Io(z, y) moves to the position Iy (%,7)- However
most transformations define points of the new image given points of the original
image. In that case, to apply the bilinear transformation, we need to compute
the inverse transformation that maps new points (or coordinates) to points (or
coordinates) of the original image.

2.1 Bilinear Interpolation

If z; and z are the integer and fractional part of z, respectively, and y; and yy
the integer and fractional part of y, Figure 1 illustrates the bilinear interpolation
method (3] to find I(z; + z7,¥i + ys), given the four nearest pixels to position
(z; + Tf,Yi+ y;): I(xi,yi), I(z; + 1,¥:), I(:E,',yi + 1), I(z; + 1,y: + 1) (image
values at particular positions are represented by vertical bars in Figure 1). First
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Fig. 1. Using Bilinear Interpolation
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Fig. 2. The distortion process due to lens

two linear interpolations are used to compute two new values (I(z;,y: +ys) and
I(z; + 1,y: + ys)) and then another linear interpolation is used to compute the
desired value (I(z: + =y, y: + ys)) from the new computed values:

I(zi,yi +yg) = (1 = yp)I(zi,9:) +ypl(zi, i + 1) 2)
Izi+ 1,y +yp) = U=y (@ + L) +ygl(zi + Lyi+1) (
Izi+zs,yi+y)) =0 —-zg)(zi,yi +yy) +zpl(zi + 1, yi + vy)

Using the bilinear interpolation, a smooth transformed image is comput.ed.
Now we are able to deal with transformations associated with cameras. In section
5.3 we describe the process to build new images from distorted images and the
set of parameters of the distortion and projection model.

3 The Distortion Model

The distortion process due to wide-angle lens is illustrated in Figure 2 Figure
2 (b) shows an image taken from the camera when the pattern shown in Figure
2 (a) is in front of the camera. Note the effect of lens, the image is distorted,
specially in those parts far away from the center of the image.

Figure 2 (c) shows the radial distortion in detail, supposing that the center
of distortion is the point Cy with coordinates (cz,c,) (not necessarily the center
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of the image). Let I4 be the distorted image captured by the camera and I, the
undistorted image associated to I,.

In order to correct the distorted image, the distorted point at position Py
with coordinates (x4, y4) in I4 should move to point P, with coordinates (z, ¥..).
Let 74 and 7, be the Euclidian distance between P; and Cy4, and between P,
and Cjy, respectively. The relationship between radial distances r4 and 7, can be
modeled in two ways:

ra =ruf1(r}) (3)
Ty Tdf2(7'3) (4)

Approximations to arbitrary functions f; and f, may be given by a Taylor
expansion: (f1(r2) = 14+ kir2 +kord +.--) and (fo(r2) = 1+ k173 + korg+---).
Figure 3 helps to see the difference between f; and f2 considering only k; for a
typical distortion in a wide-angle lens. f; models a compression while f> models
an expansion. The problem with f; is that there is the possibility to get the same
rq for two different values of 7. In fact, this behavior was found experimentally
when we use f1, borders of the corrected image duplicate parts of the image (see
the top corners in Figure 4(b) for an example). However f, does not have this
problem.
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Fig. 3. Two different functions to model the distortion of images

From now on, we consider only eq. 4. Experimentally we found that we need
to consider four terms for f», to remove the distortion due to wide-angle lens.
Then, the coordinates (z,,y.) of P, can be computed by:

Ty = Cz + (Ta — C:)f2(7'¢21)

ez + (xa — cz)(1 + k173 + kol + kar§)

Yu = Cy + (yd = cy)fZ('r?i) (5)
cy + (Ya — cy)(1 + ka7l + kot + kar)

3 = (Td — z)* + (ya — ¢&)?
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(a) Image from camera (b) Corrected image

Fig.4. An example of a wrong correction using fi

where (cz,c,) are the coordinates of the center of radial distortion. So, this
distortion model have a set of five parameters Q¢ = {cz ey, k1, ko, k3}. This
model works fine if the camera have square pixel, but if not, we need another
parameter, s, called aspect ratio that divide the term (z4 — cz). Since most
cameras have square pixels, we consider s, = 1.

4 The Projection Model

Figure 2 shows and ideal case, where the plane of the pattern is parallel to
the camera plane and center of the pattern coincides with the optical axis of
the camera. Using homogeneous coordinates, the class of 2-D planar projective
transformations between the camera plane and the plane of the undistorted
image is given by (8] [z}, y,, w)]* = M[z!,, y.,, w',]!, where matrix M is called an
homography and it has eight independent parameters,

mop m; mo
M = mg3 My Mms
me m7 1

Plane and homogeneous coordinates are related by (z, = z;,/ w;,, Yp = y;,/ w;,)
and (z, = z,/w), yu. = y.,/w'). So, a point P,(zy,y.) in image I, moves to
P, (zp,yp) in the new projected image I,. Assigning w;, = 1, the new coordinates
of P, are given by:

. = MoTutmiyutm, — M3Tutmayu+ms (6)
P~ “mezatmryat+1 2 YP meTyu+mayu+1

And now the projection parameters are O = {mg, m,, ma, m3, ma, ms, Mg, M7}

5 The Point Correspondences Method

The goal is to find a set of parameters @ and OP that transform the distorted
image capture by the camera, I, into a new projected image, I,, that match the
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image, I, of the calibration pattern put in front of the camera. To do that, a
set of point correspondences are extracted from I; and I, (see section 5.2 for
details).

Let n be the number of features, (zrk,yrk) be the coordinates of the k—-th
feature in I, and (Zak,yax) be its correspondence in Ig. From (zdk,ydr) and
using eq. 5, we can compute (ZTuk,Yyuk) and using eq. 6, we can get the coor-
dinates (Zpk,Ypk) Of the projected feature. So we have a set of pairs of points
C = {< (xrl,yrl), (xpla ypl) Sy, < (xrru yrn), (zpn’ypn) >}'

We formulate the goal of the calibration as to find a set of parameters @ =
6P U ©4 such the sum, E, of square distances between projected points and
reference points is a minimum,

ezk = Zp(O, Tdk,Ydk) — Trk
eyk = Yp(O, Tdk, Ydk) — Yrk

n
E = Zeﬁk + eZk (7)
k=1
O =argmin E(6)

5.1 Non-Linear Optimization

The Gauss-Newton-Levenberg-Marquardt method (GNLM) [6] is a non-linear
iterative technique specifically designated for minimizing functions which has
the form of sum of square functions, like E. At each iteration the increment of
parameters, vector 60, is computed solving the following linear matrix equation:

[A+\]66 =B 8)

If there is n point correspondences and g parameters in ©, A is a matrix of
dimension ¢ x ¢ and matrix B has dimension ¢ x 1. A is a parameter which is
allowed to vary at each iteration. After a little algebra, the elements of A and
B can be computed using the following formulas,

Oz pi 0Ty, Oypr Oy _ n Jdz dy.
aij = L rar (G- T + D6 00; b=~ Sk (BE ek + Hgeuk)  (9)

In order to simplify the notation, we use z, instead of zpx and yp, instead of
Ypk- Then, %If and %%{_i for (; € ©P) can be derived from eq. 6,

Ozp _ zy Ovp _ 0

dmg D dmao

—1—,01 2 — Hu Oyp =0

om, D Jdm,

—-—2-,0: T -—L—dy' =0

dma D dma

P Sl 2y
dms dmsa D (10)
Gop o 0 9Yp _ yu
Qm4 é?m.1 D
_L,dx = 0 ——E-oy = l.
dms dms D
Oy _ —TuTp 9Yp _ —Tulp
dmg D Qmﬁ D
ozp —YuZp OYp _ —VYul¥p
dmy D dmz D
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Where D = mez, + mry, + 1. Partial derivatives of distortion parameters are
derived from eq. 5 and two applications of the chain rule,

Oxp 01,0z,  Orp Oyu Oyp _ Oyp 0Ty % Oy

06; Oz, 80; ' Oy, 06;' 06; Oz, 06; = By, 9; ()
%“:‘=(Dmo—(moxu+mx*yu+m2)mo)/D2- 928 —(Dmy ~ (mozu+mi+yu-+ma)m7)/D? (12)
2L =(Dm3—(mazu+myry,+ms)me)/D?, :—:%=(Dm4—(m;,xu+m4 *yu+ms)mz)/D?

Finally, the last set of formulas are derived from eq. 5,
-‘éﬁ = r,z,(:z:d —cz)
;g‘- = rﬁ(yd == cy)
3,,"; = Tff(xd —cz)
3_’-1:1 i T,é(yd =Cy)
3}2 ; T9(Td — ¢z) (13)

Bk "'g(yd ~cy) %
G =1 — (1 + kyr3 + korlh + kar8) — 2(ky + 2kor2 + 3kard)(za — cz)
Qe = —2(ky + 2kar3 + 3kard)(Td — cz)(ya — cy)

B -—2(k1 + 2]\721‘2 + 3]\‘.37‘3)(.’13(1 - C:)(yd — Cy)

= 1= (1+k1rd + kar + 3kar3) — 2(ya — ¢)* (k1 + 2kar + 3kar)

Q
(3]
L]

Il

I

where 7 was defined previously in eq. 5. Next section describes how to cor'npute
feature points from each image, as well as their correspondences automatically.

5.2 Selecting Feature Points

As we can see in Figure 4 (a), the image has white squares over a black back-
ground. As robust feature points we select the center of mass of each one of
the white squares (or distorted white squares) of both images. The mass of ea_ch
pixel is its gray level in the range [0 — 255 (0 for black pixels and 255 for white
pixels). :

In the implementation, once a white pixel is found (considering a given
threshold), its cluster is identified visiting its neighbors recursively, and the cen-
ter of mass is computed from all pixels in the cluster.

To compute automatically point correspondences, we assume that the.array
of white squares in each image is centered, specially in the case of the image
from the camera. This is not a problem with the reference pattern, because we
use the perfect graphic file. fiokzt

We also assume that the image from the camera does not have a sxgmﬁcant
rotation, relative to the reference image. In this way, bad clusters (for instance
when the camera capture some white areas outside of the calibration pattern)
can be eliminated because the good clusters are closer to the image center. T_he
correspondences are also computed automatically if the image holds th'“? relative
correspondence of clusters with their neighbors. For instance the top—r ightmost
clusters in the image of the camera and in the reference image, are the closest
ones to the top-right corner-of the image.
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5.3 Computing Corrected Images

If we compute a set of parameters © we are able to map a point (z4,y4) into a
new projected point (x,,y,). But to compute a new image we need the inverse
mapping: to set the pixel value with integer coordinates (z,,yp), get the pixel
value with coordinates (z4,yq) in the distorted image I4.

It is easy to compute (zy,y,) given (Tp,yp,) and the homography M. In
homogeneous coordinates, [z}, y,,, w,]* = M ™[z}, yp,, wp]’.

However, it is harder to compute (z4,y4) given (z,,¥.). There is no a direct
way to solve this problem considering k;, k2 and k3. To solve it, we use the
binary search algorithm.

Our goal is to find f2(r3) given (x4, y.) and ©%. Once f(r3) has been found,
r4 and ygq are easily calculated from eq. 5. From eq. 4, we formulate a new

function f:

f(ra) =1y —1af2(r3) = ru — ra(1 + k173 + kord + k3r$) (14)

If z, = ¢; and y, = ¢y, from eq. 5 we have z4 = z,, and yq = y,. For other
cases, f(rq = 0) > 0 and we need to find a value for r4 such that f(rq) < 0
and then apply the binary search algorithm to find the value of r4 such f(ry) is
close to zero (considering some threshold). In the implementation we iteratively

increment 74 until f(rq4) < 0.

5.4 The Calibration Process

The calibration process starts with one image from the camera, I;, another
image from the calibration pattern, I, and initial values for parameters 6. In
the following algorithm, © and §©@ are considered as vectors. We start with
(cz,cy) at the center of the image, k; = k = k3 = 0 and the identity matrix for
M. The calibration algorithm is as follows:

1. From the reference image, compute the reference feature points (z,, yr), (k =

T« it

. From © and the distorted image, compute a corrected image.

3. From the corrected image compute the set of feature points (z,k, Ypk), (k =
1)

4. From (zpk,ypr)(k =1,---n) and 6 compute (Zak,yax)(k = 1,---n).

. Find the best © that minimize E using the GNLM algorithm:

(a) Compute the total error, E(O) (eq. 7).

(b) Pick a modest value for A, say A = 0.001.

(c) Solve the linear system of equations (8), and calculate E(© + §0)).

(d) if E(@+4d0) > E(O), increase A by a factor of 10, and go to the previous
step. If A grows very large, it means that there is no way to improve the
solution ©.

(e) if E(© + 60),1,) < E(O), decrease A by a factor of 10, replace © by
© + 6@, and go to step Ha.

6. Repeat steps 2-5 until E(@) does not decrease.

[\

(S
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When A = 0, the GNLM method is a Gauss—Newton method, and when A
tends to infinity, d© turns to so called steepest descent direction and the size 66
tends to zero.

The calibration algorithm apply several times the GNLM algorithm to get
better solutions. At the beginning, the clusters of the distorted image are not
perfect squares and so point features can not match exactly the feature points

computed using the reference image. Once a corrected image is ready, point
features can be better estimated.

6 Related Approaches

There are two kinds of calibration methods. The first kind is the one that uses
a calibration pattern or grid with features whose world coordinates are known.
The second family of methods is those that use geometric invariants of the image
features like parallel lines, spheres, circles, etc. [2].

The Method described in this paper is in the first family of methods. Feature
point correspondences with reference points are computed automatically. Some
other methods require a human operator (with a lot of patience) to find such
correspondences [9]. Some other registration methods uses all points or pixels
of images as features, instead of a small set of point correspondences. However
these kind of methods need an initial set of parameters close to the right one
and also have problems due to non uniform illumination [9].

The main problem when we have a high radial distortion is the accurate
detection of features. Detect white clusters of pixels is easier than detect lines
or corners. Some other methods apply the function f; of eq. (3), computing 74
directly from 7,. But they tend to fail when there is a high radial distortion, as
shown in Figure 4. Also, in order to correct images, we have to introduce more
terms in the distortion model (k;, k2, k3). Other methods use only k; and find a
direct solution for r4. However they also fail to model higher radial distortions.
Other methods [4][5) use a Taylor expansion of r4 instead of 73. They report
slightly better results than the classical approach using an expansion of r3 with
lens of low distortion [5]. In our case, using wide-angle lens with very high
distortion, we found slightly better results using the expansion of 3 instead of
T4, considering kj, ks and k3 in both cases.

Once a set of parameters was found using our method, computing each pixel
of the new image is slow (due to the binary search method). However in order to
process many images from the same camera, that process of finding correspon-
dences between I, (the new image) and I, (the distorted image) should bf: done
only once. Given such correspondences, the bilinear interpolation process 1s Very
fast and a new corrected image is computed quickly.

We have described a calibration method based on the Gauss—Newton—Le.ven—
berg-Marquardt non-linear optimization method using analytical derivatives.
Other approaches compute numerical derivatives [1,2,7], so we have faster cal-
culations and better convergence properties.
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attern (b) Image from camera (c) New image

8]

(a) Calibration

Fig. 5. The calibration process

7 Experimental Results

Table 1. Final set of parameters

mo my m2 m3 mq ms me mz
.0752 .0146 131.0073 -.0132 .0788 115.4594 -.00002 .000036
msg k1 k2 k3 Cr Cy Sz

-.000048 1.2026-06 -4.2812E-13 6.6317E-18 508.936 625.977 1

We test a MDCS2, 1” format CMOS, firewire color camera from Videre
Design with a 3.5mm C- mount lens. This camera acquire 15fps with resolution
of 1280 x 960 pixels.

The pattern calibration (image I,.), showed in Figure 5(a), was made using
the program xfig under Linux. The image taken by the camera is shown in
Figure 5(b). The corrected and projected image, using our point correspondences
method, is shown in Figure 5(c), a very good result. The GNLM process was
applied twice, requiring 6 iterations in the first case and 108 iterations in the
second case. The error E after the first GNLM search was 1.706 x 10° and at
the end the second search it was 1.572 x 105, It is interesting to compute the

maximum individual distance between points (d; = /e2; + eji) to see how good

was the match. Using this criteria, at the end of the process we got d*** = 1.86
pixels. The final parameters found are listed in Table 1.
Finally, Figure 6 shows an example of removing distortion using an image of

our Laboratory.
8 Conclusions

We propose a robust method to remove radial distortion from images using a
reference image as a guide. It is based on point correspondences between the
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Fig. 6. Original and corrected images

acquired image from the camera (with wide-angle lens) and the reference image.
This method is faster than image registration methods and it is able to model
high radial distortions. Also the selection of the center of mass of clusters of
white pixels within images, as point features, are easier to detect than lines or
corners. Another advantage of this method is its good convergence properties
even starting with a set of parameters that no introduces any distortion.

This method was implemented in Linux and it is available online! , using the
C language and standard routines from the Free Gnu Scientific library (GSL) to
solve the linear system of equations and to find the inverse of matrix M.
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